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Abstract

Aluminium dimer (Al,) is being suspected of having non-bonding (dissocia-
tive) excited electronic state (1°I1,), dipole-connected to the ground state. The
continuum of nuclear non-bonded states in the manifold of this non-bonding elec-
tronic state may be therefore crucial for the understanding of resonance Raman
(RR) spectrum of Al,, which was recently obtained in solid argon matrix by Fang
et al.[1].

So called reflection approzimation|2] was proposed in the literature for the case
of resonance with continuum, but due to its limitation here we introduce more real-
istic approximation, which leads to equations that can be easily solved numerically.
Potential energy curves for interesting electronic states, needed as input for the
proposed method, have been obtained using Complete Active Space calculations
(CASSCF-PT2). This multiconfiguartional approach, in combination with Density
Functional calculations, was also used to study electronic structure of low-lying
states of Al, and to obtain basic spectroscopic constants. These results are com-
pared with experimental data and theoretical results due to Bauschlicher, Langhoff
et al.[3, 4].

1 Electronic structure and spectroscopic constants

1.1 Methods

Complete active space self consistent field method, (CASSCF|[5]) followed by second-order
multiconfigurational perturbation theory (CASPT2[6]) calculations have been performed
using Molcas package|7]. Below we refer to this method as CASSCF-PT2. The Corre-
lation Consistent Polarized Valence Triple and Quadriple Zeta (cc-pVTZ and cc-pVQZ)
basis sets|8] were used. Calculations were performed in Dy, symmetry group (the highest
supported by Molcas suite), with molecule lying on z axis. The active space used was
composed of valence orbitals only (i.e. those arising from 3s and 3p shells of Al), however



in case of cc-pVQZ it was increased with three additional orbitals (the lowest of bs,, b3,
and by, symmetries) to solve intrunder state problem for 13 state. Electronic transition
dipole moments (TDMs) were computed from CASSCF wavefunctions as a function of
distance.

Density Functional Theory (DFT) calculations in spin-unrestriced version have been
performed with Amsterdam Density Functional (ADF) [9, 10, 11| program for states 1°IL,,,
13Z; and 1°I1,, which states can be well represented by single Slater determinant (this
assuption was further supported by CASSCF results). The calculations took place in stan-
dard TZ2P Slater Type Orbitals basis set of ADF with the following exchange-correlation
functionals: Local Spin Density Approximation (LSDA) (in VWN]12| parametrization
with Stoll’s correction|13]|), PW91[14] and BLYP|[15, 16, 17, 18|.

1.2 Results and discussion

Figures 1 and 2 show potential energy curves from example DFT and CASSCF-PT2

calculations. Spectral properties of 1°II, and 13Z; electronic states — the equilib-
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Figure 1: Potential energy curves for selected low lying states of Al, from DFT calcula-
tions with BLYP functional

rium bondlength (R.), equilibrium frequency (w.), anharmonicity (w,z.)* and vibrational
ground state energy (Gg) — are presented in tables 1, 2. The last table contains also the
adiabatic difference in energy between 1°% and 1°II, (7). The vertical energies (plus

!'Equilibrum frequency and anharmonicity coefficient come from numerically obtained energies of
vibrational terms by fitting them with the Morse formula

E, = hwe(v+ %)(1 —xe(v+ %))
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Figure 2: Potential energy curves for low lying states of Al, from CASSCF-PT2 calcula-
tions using cc-pV'TZ basis set

TDMs for dipole-allowed transitions) for equilibrium geometries of 1°II, and 132;are
given in tables 4, 5. Approximated bonding energy (¢) and equilibrium bondlength (R.)
for nearly non-bonding 1°II, state are given in table 3, however they are much less
accurate, because were obtained just by approximating potential energy curve for the
considered state with Lennard-Jones potential with exponent providing the best fit.

Basis set / R, We Wele Gy
Method functional typeA cm™! cm™! cm™!
KS-DFT LDA 2.754 253.2 1.39 126.6

PW91 2.836 221.3 1.32 110.9

BLYP 2.746 251.0 1.51 125.7

CASSCF-PT2 cc-pVTZ 2.737 279.0 1.51 139.2
cc-pVQZ 2.725  280.7 1.53  140.0

MR-CI[4] ANO-L 2.835 274 - -
Exp.[1] - ~ 205.7(5) 1.68(5) -

Table 1: Spectral data for 1311, state of Al,

Some conclusions can be drawn:

e DFT and CASSCF-PT2 curves are similar except from the region of avoided cross-
ing of 1°II, with 2°II, (not discussed in this paper, see [4]) which reflects in char-
acteristic shape of CASSCF-PT?2 curve for 1°II,, unlike DFT one.



Basis set / T R, We were G
Method functional typem ! A em?! em?! em™?
KS-DFT LDA -593.1 2.488 335.0 2.03 167.0
PWI1 437.2 2.554 294.7 2.37 146.8
BLYP 551.5 2.493 3234 235 161.2
CASSCF-PT2 cc-pVTZ 28.6  2.502 3456 2.06 172.4
ce-pVQZ 439 2491 347.0 2.07 172.9
MR-CI[4  ANO-L 227 2496 331 -

Table 2: Spectral data for 1°Y; state of Al,

Basis set R, €
Method functional/typeA 103cm™!
KS-DFT LDA 3.62 4.78
PWI1 3.93 3.27
BLYP 3.68 3.72
CASSCF-PT2 cc-pVTZ 4.74 0.25
cc-pVQZ 4.46 0.30

Table 3: Spectral data for 1°II, state of Al,

Vertical energies (and TDMs)

Basis set
Method functiona]/type 103cm~!(a.u.)
1’y 13A, 1337 1311, 1357
KS-DFT LDA 0.553 () - - 14.269 ) -
PW91 1.388 ) - - 12.706 ) -
BLYP 1.514 ) - - 13.926 ) -
CASSCF-PT2  cc-pVTZ 1.032 (0.166) 13.139 13.826 15.216 (0.789) 15.828
cc-pVQZ 0.992 (0.258) 13.330 14.037 14.814 (0.681) 16.255

Table 4: Vertical energies (and TDMs for dipole connected states) measured from

1311, state of Al, at its equilibrium geometry

e Except from LSDA 131, is always predicted as a ground state, which is in agreement
with [4]. However the adiabatic energy distance between two lowest states — 1°TI,
and 132; — changes very much from one method another. Our CASSCF-PT2
results in both basis sets give this parameter much smaller (28.6 and 4.39 ¢cm™!)
than 227 cm™! reported in [4]. However, there is a relatively big difference in
vibrational ground state energies between 1°II, and 1°¥; (at least 60 cm ™" more
for 1329’, according to our results) so even if electronic states were degenerated at



Vertical energies (and TDMs)

- 3 —1

Method ;3381:‘ set 1/t 10°cm™!(a.u.)
unctional type 1311, 13A, 135 1’y 1%,
KS-DFT LDA 1.845 (1) - - ©) — 20.143
PW91 0.683 (1) - - ) ~17.239
BLYP 0.559 (1) - - “) ~18.429
CASSCF-PT2  cc-pVTZ 1.121 (0.226) 15.121 15.855 (0.422) 16.164 18.630
cc-pVQZ 1.124 (0.321) 15426 16.421 (0.638) 16.484 17.981

Table 5: Vertical energies (and TDMs for dipole connected states) measured from
1°% state of Al, at its equilibrium geometry

their minima the ground vibronic term for 1311, would be still a ground state term?.

e 1°T1, state is slighly bonding in all calculations performed (this may be the artifact
of gaussian basis or of not including basis set superposition error). Its eventual
bonded states are probably not important for RR spectroscopy of Al,, however
their small contribution to RR amplithude was included.

e The experimental ground state equilibrum frequency 295.7 cm~! is reproduced

quite well. Comparison of our value with other theoretical works (rather good
agreement) suggest the difference is probably due to influence of solid argon matrix,
just like the site effect (splitting of the lines in RR spectrum) reported in [1].

2 Resonance Raman scattering spectrum

2.1 Introduction — theory of resonance Raman scattering

Standard expression for the scattering tensor for transition between states i (initial) and
f (final) is as follows:

ier N (W] 90)) ((Waldo [ 94))
P”f_z Ef — E;, — hQ — i,

((Wyldo|Wn)) ((Pald,|V3))
+Z E, — By + WSy — il

«

(1)

where U;, W, are the wavefunctions of the proper vibronic states, F;, E; — their energies,
2 — the frequency of incident light. () is the inner product in N-electron Hilbert space
and () is the inner product in nuclear space. The sums (integrals in case of continuum)
are over all intermediate states U,,, each of energy F, and decay rate (i.e. inverse of the

2 Assuming the mentioned difference in vibrational ground state energies equals 60 cm~*, only about
10% of molecules should occupy 1329_ state in the temperature of experiment [1] (less than 40 K).



lifetime) T',,. Intensities of Raman transitions are proportional to sum of squares of the
above amphlitudes

Lo oc ) ||’ (2)

P,

In the case of resonance Raman (RR) scattering the second (so called antiresonance) sum
in (1) may be neglected and the remaining first term is dominated by the contribution
from the manifold of one particular electronic state, i.e. the one being in resonance with
incidenting light.

For Al, there are two channels of resonance scattering theoretically possible in the
range of laser frequency used in the experiment[1]: 1°¥ — 1°%; — 1°¥_ (resonance
with bonded states) and 1°II, — 1°II, — 1°II, (resonance with continuum). In this
second channel the sum should be replaced with the integral. For considered transitions
we have only one non-zero component of scattering tensor, i.e. a,, = «. Final formula

for v is o0 (Yyld|oE)(Pr|d|;)
a = /D dEP(E)E —E, —hQ —ilg ?

where ¢ is a nuclear wavefunction of non-bonded state of energy E, p(E) is the ener-
getical density of nuclear states (density of states, DOS) and d is the z component of
transition dipole moment between electronic states 1°I1, and 1°T1,.

Decay rate I'; in the mentioned experiment seems to have main contributions from:

e radiative decay to 1°II, manifold (can be roughly estimated on ~ 1074-10"3cm ™)

e radiationless decay (should not be very important because non-adiabatic coupling
elements are non-zero only for 1°II, and 1°II,, which states are well separated)

e radiationless transfer of the energy to solid matrix

The last contribution (from the solid matrix) is probably the most important, but unfor-
tunately it cannot be predicted at all on the basis of single molecule model considered
here. Thus, for simplicity we assume that 'y = I' does not depend on the energy, so is
treated as an parameter. Then RR spectrum will be computed for various values of of I'
to analyse its influence.

2.2 Nuclear states for bonding and non-bonding potentials

To compute « from (3) one need to have nuclear wavefunction in either analytical or
numerical form, especially in the Franck-Condon region of the ground state (due to the
integration with ground state vibrational wavefunctions, localized mainly in this region).
To obtain these functions for diatomic molecule in Born-Oppenheimer approximation one
has to solve the radial Schrédinger equation:

5= T V()Y(r) = Ey(r) (4)

where p is the reduced mass of molecule. There are standard numerical algorithms of solv-
ing (4) for bonded nuclear states, but not for the continuum of non-bonded (scattering)
states.



Unfortunatelly, the pretty formalism of scattering theory cannot be applied here, due
to the reason that it is useful in predicting wavefunction far from the molecule, in principle
in the infinity, but not in the Franck-Condon region, where the nuclear wavefunctions are
needed.

So called reflection approxzimation|2] was proposed for the case of resonance with
continuum. In this approximation the repulsive potential is modelled as decreasing,
linear function of nuclear coordinate very steep, so much that the solution of (4) may
be approximated as Dirac delta centered in the turning point of the classical particle
possesing the given energy. Furthermore, it is assumed that I' — 0 (long-living states)
and transition dipole moment (TDM) does not depend on the coordinate r. Though this
model provides analytical solutions, its physical foundations are arbitrary; it is also non
sensitive to any details of repulsive nuclear potential and does not include dependence
of TDM on r. Due to these reasons reflection approximation may seem to be rather
qualitative than quantitative model of RR. Therefore there is a need for more realistic,
numerical model. No matter how useful it will be in every-day routine interpetation of RR
spectra for typical molecules, it can be extremely interesting to compare its predictions
with the results of reflection approximation (at least for few model systems).

The main problem with solving (4) numerically for non-bonded states concerns the
boundary conditions. For bonded state wavefunction ) it is true that

P(r—0) =0 ()
(r —o0) =0 (6)

because of faster than exponential decay of ¢) in growing, repulsive potential. In practise
one is interested in solving (4) in the interval {r: 0 < a < r < b < oo} (“the box”), and
conditions (5) and (6) are assumed to hold on the edges of the “box”

P(a) =0 =y(b) (7)

provided that it is sufficiently large (i.e. a =~ 0 and b is big enough in comparison with
the size of Franck-Condon region). Then, equation (4) can be easily solved numerically,
e.g. on the one-dimensional grid (see below).

For non-bonded state only the first boundary condition (at zero) holds — but no such
condition is true in the infinity, where the wavefunction has plane-wave type assymptotic
behaviour. One may ask what happen when one enforce the second condition also, i.e. put
¥(b) = 0, where b is large. From the asymptotic behaviour of solutions (~ " + \e~%)
one can realize that this requirements simply selects a discrete subset of states form the
continuum. Moreover from the same asymptotic behaviour it turns out that, for b large
enough there exist states (satisfying ¢ (b) = 0) of energy as close as is needed to any
value in the continuum. The idea of the proposed method is therefore to solve (4) on
la : b] under conditions (7) in the same way as for bonded states, obtaining a discrete
subset of solutions as a result. The “box” [a : b] should be sufficiently large to get rid
of artifacts arising from its finite size. Then, any property of the continuum being the
smooth function (e.g. density of states, transition dipole moment) which can be computed
for the found discrete set of solutions can be interpolated over continuum, which makes
possible to evaluate integrals such like (3).3

3There is one caveat in this reasoning: the method holds only for the case of non-degenerated
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In our approach the discrete and continuous part of the spectrum are treated equally.
However, during the summation /integration these two types of solutions should be distin-
guished: integration is only over states above dissociation limit. To find the estimate of
the disociation limit consistent with the character of solutions found in particular, finite
“box” we employed the criterion of the mazimum density of states: for energies above
this critical value one has “continuum”, and below one has “bonded states” (in purely
operationl sense). Of course our method leads to poor description of states nearest to
the disociation limit and these states can be errornousely classified as “bonded states”
or “continuum”. From these reasons if these states gives important contribution to any
property one would probably experience strong dependence of final results on the “box”
size, especially on b. In such cases the proposed method should be used with very large
“boxes” or even may be not applicable. However, this is not the case of the system being
studied here, as our numerical tests showed.

Equation (4) was solved using the standard grid techniques for the one-dimensional
Schrédinger equation. The radial wavefunction v (r) was discretized onto a thick grid of
points {rg = a,ry,..., Ty, Tne1 = b}, i1 = 7 + s as an array ¥ = {¢; = ¥(r;)}. The
second derivative in (4) was approximated by finite difference, tree point approximation
[19]. Adding boundary conditions (5, 6) we reduce (4) to algebraic eigenproblem (with
tridiagonal matriz)

Hy = e (8)

where H = trid((—l, e =1 (2 F Uy, 2+ up); (-1 —1)), u; = 2ms?V(r;)/h,
¢ = 2ms*E/h, which is therefore solved numerically.

The final computed amplithudes are checked to be stable in respect to increasing the
interval [a : b] and the upper limit of integration in (3).

2.3 Results

Predicted RR spectra for 1°1I,— 1°II,— 1°II, channel of scattering for variety of I’
values are shown in figure 3 (the wavelength of incident laser light is 660 nm, like in exp.
[1]). Our results are compared with the predictions from the reflection approximation
(RA). In the limit of I' — 0 (as in RA) the progression is extremelly long but not similar
to progression from RA. But since one neglects the dependence of TDM on nuclear
coordinate (i.e. replaces integrals with TDM by nuclear wavefunctions overlap integrals),

continuum, or continuum having at least countable subset of degenerated solutions (the simplest ex-
ample of degenerated continuum is free-particle problem in one dimension — for any value of energy
there are two solutions — e.g. sin(kx), cos(kz)). The reason of the failure in case of degeneracy is that
for the degenerated values of the energy the method recovers only one of few degenerated states (even
in the limit of infinitely large “box™). However, if the degeneracy is restricted only to countable (either
finite or infinite) subset of energies these values of energy can be safely removed from the integration
domain in (3) without any change of results (because they form a set of zero measure by our assumption).
In this way isolated (“random”) degenerations in the spectrum are acceptable for the method and the
only requirement is that the spectrum cannot be systematically degenerated. This type of degeneration
ussually (if not always) comes from symmetry (e.g. in the case of free particle it is due to spatial inversion
symmetry). We do not excpect, however, any type of systematic degeneracy for typical repulsive energy
curves, since they have no such symmetry. However, we cannot make formal proof of this fact and can
only conclude once again that systematic degeneracy is extremely unexpected due to lack of any spatial
symmetry in potential function V (r).



as RA assumes, both progressions are more similar to each other in the limit of I' — 0 (see
figure 4) For comparison purposes the analogous simulation has been done for the second
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Figure 3: Predicted spectra for the channel 1°IT,— 1°II,— 1°II, for variety of T' values
(Raman resonance with continuum). The incident wavelength is 660 nm

possible channel of scattering 13Z;—> 13y, — 13Z; (only bonded states as intermediates).
At laser wavelength 660 nm (like in exp. [1]) we observe preresonance Raman effect (short
progression, only slight dependence on T, figure 5). If the wavelength is ~ 642 nm the
resonance with first bonded state in 13%, manifold occurs (illustrated in figure 6).

2.4 Conclusions

The proposed method of solving radial Schrédinger equation for non-bonded states proved
to be feasible and stable enough to obtain results for diatomic system (Al,). Its results
are different from the reflection approximation even in the limit of I' — 0, however the
difference in this limit seems to be mainly due to the fact that real transition moment
depend on the nuclear coordinate.

Unfortunately, the comuted Raman spectra cannot be directly compared with exper-
imental data, since I' is unknown. I' may be estimated by compatison of computed and
observed spectral progression. In this way one can find that I" should be wvery large,
about 10? cm™! to make agreement with experimental spectrum. This large value can be
understood as an effect of the strong interaction with the matrix. On the other hand, in
the case of such strong interaction one can doubt that description by continuum is good
for Al, imprisoned in the matrix. However, we do not even try to predict the spectrum
for such complicated situation.
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Figure 4: Predicted spectra for the channel 1°T,— 1°II,— 1°II,, for variety of I" values
calculated under assumption that TDM does not depend on nuclear coordinate. The
incident wavelength is 660 nm.

However, in gas phase I' may be very small (due to the lack of the solid matrix) and
we expect quite long progression (see figure 3). Progression may be longer than reflection
approximation predicts (if only T’ can be reduced to the order of 10' cm™!; due to our
rough estimations internal contributions to Gamma — spontanious emission + vibronic
interaction + dissociation — are much smaller). It would be very interesting to verify this
prediction experimentally, but as authors know no experimental RR spectra of Al, in the
gas phase exists yet.
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Figure 5: Predicted spectra for the channel 1°%, — 1°%, — 1°%_ for variety of I' values
(preresonance Raman effect). The incident wavelength is 660 nm.
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Figure 6: Predicted spectra for the channel 1°%, — 1%, — 1°%_ for variety of I' values
(Raman resonance with bonding state). The incident wavelength is 642 nm.
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