Rezonasowe rozpraszanie ramanowskie z udziałem kontinuum stanów niezwiązanych na przykładzie dimeru glinu

Mariusz Radoń

Kraków, 11.05.2005

Mariusz Radoń Rezonansowe rozpraszanie ramanowskie

Obiekt badań

Dimer glinu, Al₂:

- Skomplikowana struktura stanów elektronowych, wątpliwości co do stanu podstawowego
- Wysoka symetria, $D_{\infty h}$
- Niewiążący stan wzbudzony, sprzężony dipolowo ze stanem podstawowym

Plan seminarium:

- Obliczenia struktury elektronowej
- Obliczenia amplitudy rezonansowego RS z udziałem kontinuum stanów niezwiązanych – ogólna metoda + wyniki

Metoda Szczegóły obliczeń Wyniki

Które stany nas interesują?

Wiadomo z doświadczenia, że stan podstawowy Al2jest trypletem.

- Trypletowi kandydaci na stan podstawowy: $1^{3}\Pi_{u}$, $1^{3}\Sigma_{g}^{-}$
- $1^3\Pi_g$, związany dipolowo z $1^3\Pi_u$
- $1^3\Sigma^-_u$, związany dipolowo z $1^3\Sigma^-_g$
- $1^{3}\Delta_{u}$ i $1^{3}\Sigma_{u}^{+}$, nie związane dipolowo ani z $1^{3}\Pi_{u}$ ani z $1^{3}\Sigma_{g}^{-}$

-∢ ≣ ▶

Metoda Szczegóły obliczeń Wyniki

Co i jak?

- Krzywe energii elektronowej (CASSCF-PT2, KS-DFT)
- Energie stanów oscylacyjnych w rozmaitościach $1^3\Pi_u$ i $1^3\Sigma_g^-$ (numeryczne rozwiązanie wibracyjnego równania Schrödingera na siatce)
- Częstość równowagowa, ω_e i współczynnik anharmoniczności, x_e fitowanie numerycznych wartości energii zależnością Morse'a:

$$E_{v} = \hbar \omega_{e} (v + \frac{1}{2}) (1 - x_{e} (v + \frac{1}{2}))$$

A 3

Metoda Szczegóły obliczeń Wyniki

Obliczenia DFT w schemacie KS

- Wszystkie powyższe stany najniższe o danej symetrii ⇒ mogą być wyznaczone z obliczeń DFT
- Możliwy schemat KS, jeśli dany stan da się dobrze reprezentować pojedynczą funkcją wyznacznikową.
- KS-DFT stosujemy tylko dla $1^{3}\Pi_{u}$, $1^{3}\Sigma_{g}^{-i}i 1^{3}\Pi_{g}$, dla których łatwo zaproponować jednowyznacznikowe reprezentacje:

$$\begin{array}{rl} 1^{3}\Pi_{u} & \sigma_{g}(3s)^{2}\sigma_{u}(3s)^{2}\sigma_{g}(3p)^{1}\pi_{u}(3p)^{1}\pi_{g}(3p)^{0}\sigma_{u}(3p)^{0} \\ 1^{3}\Sigma_{g}^{-} & \sigma_{g}(3s)^{2}\sigma_{u}(3s)^{2}\sigma_{g}(3p)^{0}\pi_{u}(3p)^{2}\pi_{g}(3p)^{0}\sigma_{u}(3p)^{0} \\ 1^{3}\Pi_{g} & \sigma_{g}(3s)^{2}\sigma_{u}(3s)^{2}\sigma_{g}(3p)^{1}\pi_{u}(3p)^{2}\pi_{g}(3p)^{1}\sigma_{u}(3p)^{0} \end{array}$$

(Potwierdzone w obliczeniach CI)

_ ∢ ⊒ ▶

Metoda Szczegóły obliczeń Wyniki

Obliczenia CASSCF-PT2

- Bazy CGTO: cc-pVTZ, cc-pVQZ
- Przestrzeń aktywna: MO z przewagą AO powłoki walencyjnej (pochodzenia 3s i 3p) + minimalna ilość orbitali usuwająca problemy ze stanami intruzami w bazie QZ
- Pakiet MOLCAS 5.4

글 🕨 🖌 글 🕨

Metoda Szczegóły obliczeń Wyniki

Obliczenia DFT w schemacie KS

- Funkcja próba typu unrestricted z ustalonymi obsadzeniami
- Baza STO: TZ2P
- Funkcjonały: LDA (VWN), LDA + BLYP, LDA + PW91
- Pakiet ADF 2002

토 🖌 🛪 토 🛌

Metoda Szczegóły obliczeń Wyniki

Obliczenia CASSCF-PT2 – Wyniki

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 = つへで

Metoda Szczegóły obliczeń Wyniki

Obliczenia KS-DFT – Wyniki

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Metoda Szczegóły obliczeń Wyniki

Eksperymentalne widmo Al₂

(Fang et al., 2001)

Uwaga: Al₂w matrycy ze stałego Ar, \sim 16K, nie w fazie gazowej!

Metoda Szczegóły obliczeń Wyniki

Charakterystyka stanu $1^3 \Pi_u$

Method	Basis set / functional type	R _e Å	$\omega_e \ { m cm}^{-1}$	$\omega_e x_e \ { m cm}^{-1}$
KS-DFT	LDA PW91	2.754 2.836	253.2 221.3	1.39 1.32
CASSCF-PT2	BLYP cc-pVTZ cc-pVQZ	2.746 2.737 2.725	251.0 279.0 280.7	1.51 1.51 1.53
MR-CI ¹	ANO-L	2.835	274	_
Exp. ²	-	_	295.7(5)	1.68(5)

- ¹(Langhoff and Bauschlicher, 1990)
- ²(Fang et al., 2001)

.⊒...>

Metoda Szczegóły obliczeń Wyniki

Charakterystyka stanu $1^3 \Pi_u$

Method	Basis set / functional type	R _e Å	$\omega_e \ { m cm}^{-1}$	$\omega_e x_e \ { m cm}^{-1}$
KS-DFT		2.754	253.2	1.39
	BLYP	2.746	251.0	1.52
CASSCF-PT2	cc-pVTZ cc-pVQZ	2.737 2.725	279.0 280.7	1.51 1.53
MR-CI ¹	ANO-L	2.835	274	_
Exp. ²	-	_	295.7(5)	1.68(5)

- ¹(Langhoff and Bauschlicher, 1990)
- ²(Fang et al., 2001)

.⊒...>

Metoda Szczegóły obliczeń Wyniki

Charakterystyka stanu $1^3\Sigma_g^-$

Method	Basis set / functional type	$T_0 \ { m cm}^{-1}$	R _e Å	$\omega_e \ { m cm}^{-1}$	$\omega_e x_e$ cm $^{-1}$
KS-DFT	LDA	-593.1	2.488	335.0	2.03
	PW91	437.2	2.554	294.7	2.37
	BLYP	551.5	2.493	323.4	2.35
CASSCF-PT2	cc-pVTZ	28.6	2.502	345.6	2.06
	cc-pVQZ	4.39	2.491	347.0	2.07
MR-CI ³	ANO-L	227	2.496	331	_
Linia fundamen	talna w widmie (Fang et	al., 2001): $\omega_e =$	295.7(5)

Mariusz Radoń

 $\omega_e x_e = 1.68(5) \text{ cm}^{-1}$

³(Langhoff and Bauschlicher, 1990)

医下子 医下

3

Metoda Szczegóły obliczeń Wyniki

Charakterystyka stanu $1^3\Sigma_g^-$

Method	Basis set / functional type	$T_0 \ { m cm}^{-1}$	R _e Å	$\omega_e \ { m cm}^{-1}$	$\omega_e x_e \ { m cm}^{-1}$
KS-DFT	LDA	-593.1	2.488	335.0	2.03
	PW91	437.2	2.554	294.7	2.37
	BLYP	551.5	2.493	323.4	2.35
CASSCF-PT2	cc-pVTZ	28.6	2.502	345.6	2.06
	cc-pVQZ	4.39	2.491	347.0	2.07
MR-CI ³	ANO-L	227	2.496	331	_
Linia fundamer	italna w widmie (Fang et	al., 2001): $\omega_e =$	295.7(5)

Linia fundamentalna w widmie (Fang et al., 2001): $\omega_e = 295.7(5) \text{ cm}^{-1}$, $\omega_e x_e = 1.68(5) \text{ cm}^{-1}$

³(Langhoff and Bauschlicher, 1990)

医下 不至下

3

Podsumowanie

- We wszystkich wykonanych obl. (z wyjątkiem DFT LDA) $1^{3}\Pi_{u}$ jest stanem podstawowym
- Adiabatyczna odległość energetyczna $1^3\Pi_u 1^3\Sigma_g^-$ zmienia się znacznie
- Stan 1³Π_g jest lekko wiążacy we wszystkich obliczeniach jego ew. stany związane mają małe znaczenie dla spektroskopii
- Obserwowana częstość drgań, 295.7cm^{-1} jest dość dobrze oddana w obliczeniach CASSCF-PT2 dla $1^3\Pi_u$
- Porównanie z innymi obliczeniami *ab initio* pokazuje, że pewna niezgodność ω z doświadczeniem może być wynikiem oddziaływań z matrycą

_ ∢ ⊒ →

Podstawy opisu teoretycznego Przybliżenie odbiciowe Jak stworzyć bardziej realistyczny model' Wyniki

Jak obliczyć intensywności przejść?

Dla przejścia $i \rightarrow f$:

$$\alpha_{\rho\sigma}^{i\to f} = \sum_{n} \frac{(\langle \Psi_{f} | d_{\rho} | \Psi_{n} \rangle)(\langle \Psi_{n} | d_{\sigma} | \Psi_{i} \rangle)}{E_{n} - E_{i} - \hbar\Omega - i\Gamma_{n}} + \frac{(\langle \Psi_{f} | d_{\sigma} | \Psi_{n} \rangle)(\langle \Psi_{n} | d_{\rho} | \Psi_{i} \rangle)}{E_{n} - E_{f} + \hbar\Omega - i\Gamma_{n}}$$
(1)

$$I_{\text{tot}}^{i \to f} \propto \Omega^4 \sum_{\rho,\sigma} |\alpha_{\rho\sigma}|^2$$
 (2)

< 三 > < 三 >

Uwagi:

• Skorzystanie wprost z (1) jest efektywne tylko w przypadku rezonansowego rozproszenia!

Podstawy opisu teoretycznego Przybliżenie odbiciowe Jak stworzyć bardziej realistyczny model? Wyniki

Kanały rozpraszania rezonansowego

- $1^3\Pi_u
 ightarrow 1^3\Pi_g
 ightarrow 1^3\Pi_u$ dozwolone przez składową d_z
- $1^{3}\Sigma_{g}^{-} \rightarrow 1^{3}\Sigma_{u}^{-} \rightarrow 1^{3}\Sigma_{g}^{-}$ dozwolone przez składową d_{z}

Pozostałe nisko leżace stany nie są związane dipolowo ani z $1^{3}\Pi_{u}$, ani z $1^{3}\Sigma_{g}^{-}$.

Podstawy opisu teoretycznego Przybliżenie odbiciowe Jak stworzyć bardziej realistyczny model? Wyniki

Rozproszenie z udziałem kontinuum

- W kanale $1^{3}\Pi_{u} \rightarrow 1^{3}\Pi_{g} \rightarrow 1^{3}\Pi_{u}$ b. istotny jest udział jądrowych stanów rozproszeniowych (rezonans z kontinuum)
- Przejawy w widmie:
 - anomalnie powolny spadek intensywności nadtonów
 - łagodny kształt profili widmowych pomimo rezonansu

- E - N

Podstawy opisu teoretycznego Przybliżenie odbiciowe Jak stworzyć bardziej realistyczny model' Wyniki

Eksperymentalne widmo Al₂

(Fang et al., 2001)

Ξ.

Rozproszenie z udziałem kontinuum – c.d.

Suma we wzorze (1) staje się całką. Przybliżony wzór dla naszego przypadku:

$$\alpha = \int_{D}^{\infty} \mathrm{d}E\rho(E) \frac{(\psi_{f}|d|\phi_{E})(\phi_{E}|d|\psi_{i})}{E - E_{i} - \hbar\Omega - i\Gamma_{E}}$$
(3)

gdzie:

- $\rho(E)$ gęstość stanów kontinuum
- $\psi_i,\,\psi_f$ funkcje oscylacyjne stanów początkowego i końcowego w rozmaitości $1^3\Pi_u$
- $\phi \equiv \phi_E$ funkcja rozproszeniowa stanu pośredniego w rozmaitości stanu 1³ Π_g
- $d \equiv d(r)$ elektronowy moment przejścia $1^{3}\Pi_{g}$ $1^{3}\Pi_{u}$
- Γ_E odwrotność czasu życia stanu ϕ_E (szybkość rozpadu)

▲ 国 ▶ ▲ 国 ▶ □

Podstawy opisu teoretycznego Przybliżenie odbiciowe Jak stworzyć bardziej realistyczny model? Wyniki

Rozproszenie z udziałem kontinuum – c.d.

Potrzebne są funkcje falowe $\phi_E(r)$ jądrowych stanów niezwiązanych. Trzeba rozwiązać 1-wymiarowe, radialne równanie Schrödingera

$$-\frac{\hbar^2}{2\mu}\frac{d^2\phi}{dr^2} + V(r)\phi(r) = E\phi(r)$$
(4)

z odpychającym potencjałem V

글 🕨 🖌 글 🕨

Podstawy opisu teoretycznego Przybliżenie odbiciowe Jak stworzyć bardziej realistyczny model? Wyniki

Przybliżenie odbiciowe (Reflection Approximation, RA)

Założenia:

- Potencjał stanu podstawowego harmoniczny
- Potencjał stanu wzbudzonego odpychający liniowy V₁(r) = ar + b, a < 0
- Jądrowe stany rozproszeniowe można przybliżyć jako φ_E ∝ δ(r E-b/a)
 d(r) = const

•
$$\Gamma \rightarrow 0+$$

Schemat⁴

⁴(Mingardi and Siebrand, 1973)

Mariusz Radoń

Podstawy opisu teoretycznego Przybliżenie odbiciowe Jak stworzyć bardziej realistyczny model? Wyniki

Przybliżenie odbiciowe (Reflection Approximation, RA)

Założenia:

- Potencjał stanu podstawowego harmoniczny
- Potencjał stanu wzbudzonego odpychający liniowy V₁(r) = ar + b, a < 0
- Jądrowe stany rozproszeniowe można przybliżyć jako φ_E ∝ δ(r E-b/a)
 d(r) = const
- $\Gamma \rightarrow 0+$

Schemat⁴

⁴(Mingardi and Siebrand, 1973)

Podstawy opisu teoretycznego Przybliżenie odbiciowe Jak stworzyć bardziej realistyczny model? Wyniki

Przybliżenie odbiciowe

Dzięki prostocie modelu można uzyskać rozwiązania analityczne. Intensywności przejść w rozmaitości wibracyjnej elektronowego stanu podstawowego:

$$J_{m \to n} \propto \frac{1}{\sqrt{n+1/2}}$$
 (5)

< 三 > < 三 >

Względne intensywności: 173 : 100 : 77 : 65 : 58 : 52 ..

Podstawy opisu teoretycznego Przybliżenie odbiciowe Jak stworzyć bardziej realistyczny model? Wyniki

Przybliżenie odbiciowe

Dzięki prostocie modelu można uzyskać rozwiązania analityczne. Intensywności przejść w rozmaitości wibracyjnej elektronowego stanu podstawowego:

$$J_{m \to n} \propto \frac{1}{\sqrt{n+1/2}}$$
 (5)

< ∃ >

Względne intensywności: 173 : 100 : 77 : 65 : 58 : 52 ...

Podstawy opisu teoretycznego Przybliżenie odbiciowe Jak stworzyć bardziej realistyczny model? Wyniki

Jak stworzyć bardziej realistyczny model?

Idea jest oczywista:

- Chcemy wziąc realny potencjał V z obliczeń
- Numerycznie rozwiążemy równ. Schrödingera dla skończonego zbioru energii {*E_i*}
- Dla obliczonych rozwiązań ϕ_{E_i} wyliczymy całki z momentem przejścia, czasy życia itd.
- Numerycznie wykonamy całkowanie po stanach

Kluczowe jest znalezienie $E_i, \phi_{E_i} \dots$

글 🖌 🖌 글 🕨

Podstawy opisu teoretycznego Przybliżenie odbiciowe Jak stworzyć bardziej realistyczny model? Wyniki

Numeryczne wyznaczanie stanów rozproszeniowych

Perturbacyjne wyliczenie poprawek do fal płaskich???

- Formalizm teorii rozpraszania (funkcja Greena, fale parcjalne, itp.)
- Posiada liczne wady
 - Startujemy z przybliżenia bardzo złego na małych odległościach
 - Nie ma możliwości kontrolowania dokładności
 - Konieczna znajomość energii dysocjacji (z asymptotyki potencjału) żeby obliczyć energię kinetyczną w ∞ związaną zk

4 E b

Podstawy opisu teoretycznego Przybliżenie odbiciowe Jak stworzyć bardziej realistyczny model? Wyniki

Numeryczne wyznaczanie stanów rozproszeniowych

"Wariacyjne" wyliczanie poprawek do fal płaskich??? Przedstawiamy rozwiązanie w postaci:

$$\phi_E(r) = e^{-ikr} + e^{ikr+i\phi} + \eta_E(r)$$
$$E = D + \hbar^2 k^2 / 2\mu$$
(6)

i wyprowadzamy równanie na poprawkę η . Następnie szukamy takiej fazy ϕ , dla której poprawka η zanika możliwie szybko

- Możliwa kontrola dokładności
- Mimo tego liczne wady:
 - Dość trudna realizacja numeryczna i złożoność obliczeniowa
 - Problemy z normalizacją rozwiązań
 - Konieczna znajomość energii dysocjacji (z asymptotyki potencjału)

(E) < E)</p>

Podstawy opisu teoretycznego Przybliżenie odbiciowe Jak stworzyć bardziej realistyczny model? Wyniki

Numeryczne wyznaczanie stanów rozproszeniowych

"Wariacyjne" wyliczanie poprawek do fal płaskich??? Przedstawiamy rozwiązanie w postaci:

$$\phi_E(r) = e^{-ikr} + e^{ikr + i\phi} + \eta_E(r)$$
$$E = D + \hbar^2 k^2 / 2\mu$$
(6)

i wyprowadzamy równanie na poprawkę $\eta.~$ Następnie szukamy takiej fazy $\phi,$ dla której poprawka η zanika możliwie szybko

- Możliwa kontrola dokładności
- Mimo tego liczne wady:
 - Dość trudna realizacja numeryczna i złożoność obliczeniowa
 - Problemy z normalizacją rozwiązań
 - Konieczna znajomość energii dysocjacji (z asymptotyki potencjału)

(E) < E)</p>

Podstawy opisu teoretycznego Przybliżenie odbiciowe Jak stworzyć bardziej realistyczny model? Wyniki

Numeryczne wyznaczanie stanów rozproszeniowych

"Wariacyjne" wyliczanie poprawek do fal płaskich??? Przedstawiamy rozwiązanie w postaci:

$$\phi_E(r) = e^{-ikr} + e^{ikr + i\phi} + \eta_E(r)$$
$$E = D + \hbar^2 k^2 / 2\mu$$
(6)

i wyprowadzamy równanie na poprawkę η . Następnie szukamy takiej fazy ϕ , dla której poprawka η zanika możliwie szybko

- Możliwa kontrola dokładności
- Mimo tego liczne wady:
 - Dość trudna realizacja numeryczna i złożoność obliczeniowa
 - Problemy z normalizacją rozwiązań
 - Konieczna znajomość energii dysocjacji (z asymptotyki potencjału)

- E - N

Podstawy opisu teoretycznego Przybliżenie odbiciowe Jak stworzyć bardziej realistyczny model? Wyniki

Źródło problemów

Głowny problem:

- Zakładamy na wstępie wartości E dla rozwiązania
- Znajomość energii dysocjacji jest konieczna, aby wyliczyć k i asymptotykę rozwiązania, która ma znaczenie drugorzędne

$$E = D + \hbar^2 k^2 / 2\mu$$

A 3

Podstawy opisu teoretycznego Przybliżenie odbiciowe Jak stworzyć bardziej realistyczny model? Wyniki

Sugestie pod adresem lepszej metody

- Łatwo rozwiązywać numerycznie problemy z warunkami brzegowymi (zwłaszcza Dirichleta)
- Spróbujmy dołożyć do naszego problemu dodatkowe, niefizyczne warunki brzegowe, których jedyną rolą będzie dyskretyzacja kontinuum
- Pewna analogia do CWB Borna-von Kármana

글 🕨 🖌 글 🕨

Proponowana strategia

Sposób postępowania:

- Rozważamy r. Schrödingera (4) na przedziale [a:b], $a \rightarrow 0$, $b \rightarrow \infty$ (*pudło*)
- Narzucamy warunki:
 - $\phi_E(a) = 0 \text{naturalny}$
 - $\phi_E(b) = 0$ aby otrzymać dyskretny zbiór rozwiązań
- Dla znalezionych funkcji własnych ϕ_E liczymy calki $d_{E,m} \equiv (\phi_E | d | \psi_m)$
- Dla energii pomiędzy znalezionymi wartościmi własnymi obliczamy gęstość stanów
- Interpolujemy calki $d_{E,m}$ i gęstość stanów

・ 何 ト ・ ヨ ト ・ ヨ ト

Proponowana strategia

Sposób postępowania:

- Rozważamy r. Schrödingera (4) na przedziale [a:b], $a \rightarrow 0$, $b \rightarrow \infty$ (*pudło*)
- Narzucamy warunki:
 - $\phi_E(a) = 0 \text{naturalny}$
 - $\phi_E(b) = 0$ aby otrzymać dyskretny zbiór rozwiązań
- Dla znalezionych funkcji własnych ϕ_E liczymy calki $d_{E,m} \equiv (\phi_E | d | \psi_m)$
- Dla energii pomiędzy znalezionymi wartościmi własnymi obliczamy gęstość stanów
- Interpolujemy calki $d_{E,m}$ i gęstość stanów

(E) < E)</p>

Proponowana strategia

Sposób postępowania:

- Rozważamy r. Schrödingera (4) na przedziale [a:b], $a \rightarrow 0$, $b \rightarrow \infty$ (*pudło*)
- Narzucamy warunki:
 - $\phi_E(a) = 0 \text{naturalny}$
 - $\phi_E(b) = 0$ aby otrzymać dyskretny zbiór rozwiązań
- Dla znalezionych funkcji własnych ϕ_E liczymy calki $d_{E,m} \equiv (\phi_E | d | \psi_m)$
- Dla energii pomiędzy znalezionymi wartościmi własnymi obliczamy gęstość stanów
- Interpolujemy calki $d_{E,m}$ i gęstość stanów

< 三ト < 三ト

Proponowana strategia

Sposób postępowania:

- Rozważamy r. Schrödingera (4) na przedziale [a:b], $a \rightarrow 0$, $b \rightarrow \infty$ (*pudło*)
- Narzucamy warunki:
 - $\phi_E(a) = 0 \text{naturalny}$
 - $\phi_E(b) = 0$ aby otrzymać dyskretny zbiór rozwiązań
- Dla znalezionych funkcji własnych ϕ_E liczymy calki $d_{E,m} \equiv (\phi_E | d | \psi_m)$
- Dla energii pomiędzy znalezionymi wartościmi własnymi obliczamy gęstość stanów
- Interpolujemy calki $d_{E,m}$ i gęstość stanów

(E) < E)</p>

Proponowana strategia

Sposób postępowania:

- Rozważamy r. Schrödingera (4) na przedziale [a:b], $a \rightarrow 0$, $b \rightarrow \infty$ (*pudło*)
- Narzucamy warunki:
 - $\phi_E(a) = 0 \text{naturalny}$
 - $\phi_E(b) = 0$ aby otrzymać dyskretny zbiór rozwiązań
- Dla znalezionych funkcji własnych ϕ_E liczymy calki $d_{E,m} \equiv (\phi_E | d | \psi_m)$
- Dla energii pomiędzy znalezionymi wartościmi własnymi obliczamy gęstość stanów
- Interpolujemy calki $d_{E,m}$ i gęstość stanów

(E) < E)</p>

Proponowana strategia

Sposób postępowania:

- Rozważamy r. Schrödingera (4) na przedziale [a:b], $a \rightarrow 0$, $b \rightarrow \infty$ (*pudło*)
- Narzucamy warunki:
 - $\phi_E(a) = 0 \text{naturalny}$
 - $\phi_E(b) = 0$ aby otrzymać dyskretny zbiór rozwiązań
- Dla znalezionych funkcji własnych ϕ_E liczymy calki $d_{E,m} \equiv (\phi_E | d | \psi_m)$
- Dla energii pomiędzy znalezionymi wartościmi własnymi obliczamy gęstość stanów
- Interpolujemy calki $d_{E,m}$ i gęstość stanów

▲ 臣 ▶ | ▲ 臣 ▶ |

Proponowana strategia

Sposób postępowania:

- Rozważamy r. Schrödingera (4) na przedziale [a:b], $a \rightarrow 0$, $b \rightarrow \infty$ (*pudło*)
- Narzucamy warunki:
 - $\phi_E(a) = 0 \text{naturalny}$
 - $\phi_E(b) = 0$ aby otrzymać dyskretny zbiór rozwiązań
- Dla znalezionych funkcji własnych ϕ_E liczymy calki $d_{E,m} \equiv (\phi_E | d | \psi_m)$
- Dla energii pomiędzy znalezionymi wartościmi własnymi obliczamy gęstość stanów
- Interpolujemy calki $d_{E,m}$ i gęstość stanów

▲ 臣 ▶ | ▲ 臣 ▶ |

Uwagi

- Procedura ta odtwarza oryginalne zagadnienie dla $b\to\infty$ dyskretny zbiór rozwiązań można w ten sposób uczynić dowolnie gęstym
- Obliczenia należy wykonać dla szeregu skończonych wartości b i zbadać zachowanie się wyników przy zwiększaniu "pudła" [a : b]!
- Granica dysocjacji
 - Teraz ma znaczenie drugorzędne wyznacza jedynie dolną granicę kontinuum, nie wpływa jawnie na postać $\phi_{\rm E}$
 - Wyznaczamy ją nie z asymptotyki potencjału, ale z maksimum numerycznej gęstości stanów (znaczna korzyść)

< 注) < 注) < 注)

Uwagi

- Procedura ta odtwarza oryginalne zagadnienie dla $b\to\infty$ dyskretny zbiór rozwiązań można w ten sposób uczynić dowolnie gęstym
- Obliczenia należy wykonać dla szeregu skończonych wartości b i zbadać zachowanie się wyników przy zwiększaniu "pudła" [a : b]!
- Granica dysocjacji
 - Teraz ma znaczenie drugorzędne wyznacza jedynie dolną granicę kontinuum, nie wpływa jawnie na postać $\phi_{\rm E}$
 - Wyznaczamy ją nie z asymptotyki potencjału, ale z maksimum numerycznej gęstości stanów (znaczna korzyść)

▲ 臣 ▶ | ▲ 臣 ▶

Uwagi

- Procedura ta odtwarza oryginalne zagadnienie dla $b\to\infty$ dyskretny zbiór rozwiązań można w ten sposób uczynić dowolnie gęstym
- Obliczenia należy wykonać dla szeregu skończonych wartości b i zbadać zachowanie się wyników przy zwiększaniu "pudła" [a : b]!
- Granica dysocjacji
 - Teraz ma znaczenie drugorzędne wyznacza jedynie dolną granicę kontinuum, nie wpływa jawnie na postać $\phi_{\rm E}$
 - Wyznaczamy ją nie z asymptotyki potencjału, ale z maksimum numerycznej gęstości stanów (znaczna korzyść)

- A - E - N

Podstawy opisu teoretycznego Przybliżenie odbiciowe Jak stworzyć bardziej realistyczny model? Wyniki

Nieco szczegółów...

• Numeryczne rozwiązywanie równania Schrödingera

- Dyskretyzacja na siatce
- Trójpunktowe przybliżenie dla drugiej pochodnej
- Diagonalizacja macierzy trójdiagonalnej b. efektywne algorytmy
- \Rightarrow (Salejda et al., 2002)
- Interpolacja
 - Splajn kubiczny
- Całkowanie
 - Kwadratura adaptacyjna
 - Oparta na metodzie Simpsona

< ∃ →

Jak ocenić czas życia stanów pośrednich?

Kanały rozpadu stanów niezwiązanych w rozmaitości $1^{3}\Pi_{g}$:

- Rozpad promienisty $1^{3}\Pi_{g} \rightarrow 1^{3}\Pi_{u} + \gamma \ (\Gamma \simeq 10^{-4} 10^{-3} \text{cm}^{-1})$
- Bezpromieniste przejścia do stanu 1³II_u(mały wpływ, bo odległe energetycznie)
- Dysocjacja (nie ma większego wpływu niż przejścia elektronowe)
- Bezpromienisty przekaz energii do matrycy (wpływ trudny do oszacowania)

 \Rightarrow Nie wyznaczamy $\Gamma,$ ale badamy zależność wyników od tego parametru, zakładając, że jest on niezależny od stanu ϕ_E

Jak ocenić czas życia stanów pośrednich?

Kanały rozpadu stanów niezwiązanych w rozmaitości $1^{3}\Pi_{g}$:

- Rozpad promienisty $1^{3}\Pi_{g} \rightarrow 1^{3}\Pi_{u} + \gamma \ (\Gamma \simeq 10^{-4} \text{--} 10^{-3} \text{cm}^{-1})$
- Bezpromieniste przejścia do stanu 1³II_u(mały wpływ, bo odległe energetycznie)
- Dysocjacja (nie ma większego wpływu niż przejścia elektronowe)
- Bezpromienisty przekaz energii do matrycy (wpływ trudny do oszacowania)
- \Rightarrow Nie wyznaczamy $\Gamma,$ ale badamy zależność wyników od tego parametru, zakładając, że jest on niezależny od stanu ϕ_E

Jak ocenić czas życia stanów pośrednich?

Kanały rozpadu stanów niezwiązanych w rozmaitości $1^{3}\Pi_{g}$:

- Rozpad promienisty $1^{3}\Pi_{g} \rightarrow 1^{3}\Pi_{u} + \gamma \ (\Gamma \simeq 10^{-4} \text{--} 10^{-3} \text{cm}^{-1})$
- Bezpromieniste przejścia do stanu 1³Π_u(mały wpływ, bo odległe energetycznie)
- Dysocjacja (nie ma większego wpływu niż przejścia elektronowe)
- Bezpromienisty przekaz energii do matrycy (wpływ trudny do oszacowania)
- \Rightarrow Nie wyznaczamy $\Gamma,$ ale badamy zależność wyników od tego parametru, zakładając, że jest on niezależny od stanu ϕ_E

Jak ocenić czas życia stanów pośrednich?

Kanały rozpadu stanów niezwiązanych w rozmaitości $1^{3}\Pi_{g}$:

- Rozpad promienisty $1^{3}\Pi_{g} \rightarrow 1^{3}\Pi_{u} + \gamma \ (\Gamma \simeq 10^{-4} \text{--} 10^{-3} \text{cm}^{-1})$
- Bezpromieniste przejścia do stanu 1³Π_u(mały wpływ, bo odległe energetycznie)
- Dysocjacja (nie ma większego wpływu niż przejścia elektronowe)
- Bezpromienisty przekaz energii do matrycy (wpływ trudny do oszacowania)

 \Rightarrow Nie wyznaczamy $\Gamma,$ ale badamy zależność wyników od tego parametru, zakładając, że jest on niezależny od stanu ϕ_E

Jak ocenić czas życia stanów pośrednich?

Kanały rozpadu stanów niezwiązanych w rozmaitości $1^{3}\Pi_{g}$:

- Rozpad promienisty $1^{3}\Pi_{g} \rightarrow 1^{3}\Pi_{u} + \gamma \ (\Gamma \simeq 10^{-4} \text{--} 10^{-3} \text{cm}^{-1})$
- Bezpromieniste przejścia do stanu 1³Π_u(mały wpływ, bo odległe energetycznie)
- Dysocjacja (nie ma większego wpływu niż przejścia elektronowe)
- Bezpromienisty przekaz energii do matrycy (wpływ trudny do oszacowania)

 \Rightarrow Nie wyznaczamy $\Gamma,$ ale badamy zależność wyników od tego parametru, zakładając, że jest on niezależny od stanu ϕ_E

Jak ocenić czas życia stanów pośrednich?

Kanały rozpadu stanów niezwiązanych w rozmaitości $1^{3}\Pi_{g}$:

- Rozpad promienisty $1^{3}\Pi_{g} \rightarrow 1^{3}\Pi_{u} + \gamma \ (\Gamma \simeq 10^{-4} \text{--} 10^{-3} \text{cm}^{-1})$
- Bezpromieniste przejścia do stanu 1³Π_u(mały wpływ, bo odległe energetycznie)
- Dysocjacja (nie ma większego wpływu niż przejścia elektronowe)
- Bezpromienisty przekaz energii do matrycy (wpływ trudny do oszacowania)
- \Rightarrow Nie wyznaczamy Γ , ale badamy zależność wyników od tego parametru, zakładając, że jest on niezależny od stanu ϕ_{E}

B b 4 B b

Obiekt badań	Podstawy opisu teoretycznego
Struktura elektronowa i czestości drgań	Przybliżenie odbiciowe
Intensywności przejść ramanowskich	Jak stworzyć bardziej realistyczny model?
References	Wyniki

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

Obiekt badań Podstawy opisu teoretycznego Struktura elektronowa i częstości drgań Przybliżenie odbiciowe Intensywności przejść ramanowskich Jak stworzyć bardziej realistyczny model? References Wyniki

Teoretyczne widmo dla kanału $1^3\Pi_u \rightarrow 1^3\Pi_g \rightarrow 1^3\Pi_u$ w zależności od parametru Γ . $\lambda = 660$ nm

Obliczone widmo, gdyby elektronowy moment przejścia był stały $(\phi_E|d(r)|\psi_m) \simeq d(\phi_E|\psi_m)$, jak w RA. $\lambda = 660$ nm

Obiekt badań Podstawy opisu teoretycznego Struktura elektronowa i częstości drgań Przybliżenie odbiciowe Intensywności przejść ramanowskich Jak stworzyć bardziej realistyczny model? Wywiki

Widmo z uwzględnieniem kanału $1^{3}\Sigma_{g}^{-} \rightarrow 1^{3}\Sigma_{u}^{-} \rightarrow 1^{3}\Sigma_{g}^{-}$, $\lambda = 660$ nm.

Widmo z uwzględnieniem kanału $1^{3}\Sigma_{g}^{-} \rightarrow 1^{3}\Sigma_{u}^{-} \rightarrow 1^{3}\Sigma_{g}^{-}$, $\lambda = 642$ nm (rezonans ze związanym stanem oscylacyjnym)

Podstawy opisu teoretycznego Przybliżenie odbiciowe Jak stworzyć bardziej realistyczny model? Wyniki

Eksperymentalne widmo Al₂

(Fang et al., 2001)

Uwaga: Al₂w matrycy ze stałego Ar, \sim 16K, nie w fazie gazowej!

Podstawy opisu teoretycznego Przybliżenie odbiciowe Jak stworzyć bardziej realistyczny model? Wyniki

Podsumowanie

- Widmo doświadczalne: progresja jest względnie krótka (okolo 100:50:30) ⇒
 - Opis widma uwięzionego dimeru przez kontinuum stanów niezwiązanych nie jest do końca uzasadniony; niestety: brak widma RR w fazie gazowej
 - Γ może być duże w przypadku uwięzienia w ciele stałym
- Przybliżenie odbiciowe może być czasem nieuzasadnione
- Sugestia, że poszerzenie modelu RA o nietrywialną zależność *d* od *R* mogłoby dawać lepsze wyniki przy całej jego prostocie
- Opisano stosunkowo ogólny i systematyczny schemat wykonywania sum po jądrowych stanach niezwiązanych

ヨト イヨト

Podstawy opisu teoretycznego Przybliżenie odbiciowe Jak stworzyć bardziej realistyczny model? Wyniki

Podsumowanie

- Widmo doświadczalne: progresja jest *względnie krótka* (okolo 100:50:30) ⇒
 - Opis widma uwięzionego dimeru przez kontinuum stanów niezwiązanych nie jest do końca uzasadniony; niestety: brak widma RR w fazie gazowej
 - Γ może być duże w przypadku uwięzienia w ciele stałym
- Przybliżenie odbiciowe może być czasem nieuzasadnione
- Sugestia, że poszerzenie modelu RA o nietrywialną zależność *d* od *R* mogłoby dawać lepsze wyniki przy całej jego prostocie
- Opisano stosunkowo ogólny i systematyczny schemat wykonywania sum po jądrowych stanach niezwiązanych

글 🕨 🖌 글 🕨

Podsumowanie

- Widmo doświadczalne: progresja jest *względnie krótka* (okolo 100:50:30) ⇒
 - Opis widma uwięzionego dimeru przez kontinuum stanów niezwiązanych nie jest do końca uzasadniony; niestety: brak widma RR w fazie gazowej
 - Γ może być duże w przypadku uwięzienia w ciele stałym

• Przybliżenie odbiciowe może być czasem nieuzasadnione

- Sugestia, że poszerzenie modelu RA o nietrywialną zależność *d* od *R* mogłoby dawać lepsze wyniki przy całej jego prostocie
- Opisano stosunkowo ogólny i systematyczny schemat wykonywania sum po jądrowych stanach niezwiązanych

_ ∢ ⊒ →

Podsumowanie

- Widmo doświadczalne: progresja jest *względnie krótka* (okolo 100:50:30) ⇒
 - Opis widma uwięzionego dimeru przez kontinuum stanów niezwiązanych nie jest do końca uzasadniony; niestety: brak widma RR w fazie gazowej
 - Γ może być duże w przypadku uwięzienia w ciele stałym
- Przybliżenie odbiciowe może być czasem nieuzasadnione
- Sugestia, że poszerzenie modelu RA o nietrywialną zależność *d* od *R* mogłoby dawać lepsze wyniki przy całej jego prostocie
- Opisano stosunkowo ogólny i systematyczny schemat wykonywania sum po jądrowych stanach niezwiązanych

-∢ ≣ ▶

Podsumowanie

- Widmo doświadczalne: progresja jest *względnie krótka* (okolo 100:50:30) ⇒
 - Opis widma uwięzionego dimeru przez kontinuum stanów niezwiązanych nie jest do końca uzasadniony; niestety: brak widma RR w fazie gazowej
 - Γ może być duże w przypadku uwięzienia w ciele stałym
- Przybliżenie odbiciowe może być czasem nieuzasadnione
- Sugestia, że poszerzenie modelu RA o nietrywialną zależność *d* od *R* mogłoby dawać lepsze wyniki przy całej jego prostocie
- Opisano stosunkowo ogólny i systematyczny schemat wykonywania sum po jądrowych stanach niezwiązanych

4 E b

Bibliografia

Fang, L., Davis, B. L., Lu, H., and Lombardi, J. R.: 2001, Spectrochimica Acta Part A 57, 2809

Langhoff, S. R. and Bauschlicher, C. W.: 1990, Journal of Chemical Physics **92**, 1879

Mingardi, M. and Siebrand, W.: 1973, Chemical Physics Letters 23, 1

Salejda, W., Tyc, M., and Just, M.: 2002, Algebraiczne metody rozwiazywania równania Schrödingera, Wydawnictwo Naukowe PWN, Warszawa

A 3